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Abstract

Purpose: To evaluate the effectiveness of C-LAB®, an artificial intelligence (AI) platform, in extracting, structuring, and cen-

tralizing biomarker data from breast cancer pathology reports within the challenging, heterogeneous dataset of the Institut

de Cancérologie de l’Ouest (ICO).

Methods: C-LAB® was deployed at the ICO to analyze HER2 and hormonal receptor data from breast cancer pathology

reports. During the development phase, 292 anatomic pathology reports were used to design and refine the rule-based

extraction algorithm through an iterative process of monitoring and adjustments. After finalizing the algorithm, it was

applied to a total of 2323 anatomic pathology reports. To evaluate the platform’s accuracy, performance metrics could

only be calculated for a subset of these reports that were also available in the structured National Epidemiological

Strategy and Medical Economics (ESME) database. Out of the 2323 pathology reports belonging to 487 patients analyzed

by C-LAB®, 666 corresponded to 97 patients present in the ESME database. These reports were used as the gold standard

for performance assessment, as ESME provides structured data against which the outputs of the C-LAB® algorithm could

be compared.

Results: C-LAB® achieved over 80% agreement with human extractions (precision, recall, and F1-score) in structuring bio-

marker data from complex, unstructured pathology reports, despite dataset variability and optical character recognition

errors. While the ESME database served as a benchmark, its reliance on single manual data entry without secondary review

introduces potential inaccuracies, suggesting the observed performance reflects close alignment between human and algo-

rithmic extractions rather than absolute accuracy. C-LAB® demonstrates significant potential to reduce manual workload,

centralize data, and enable scalable, real-time reporting.

Conclusion: AI technologies like C-LAB® show significant potential in creating accessible and actionable digital factories

from complex pathology data, aiding in the precision management of diseases such as breast cancer diagnostics and

treatment.
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Introduction

In oncology, precision medicine is well established, apply-

ing treatments tailored to the unique characteristics of each

patient’s cancer.1,2 This approach relies on a detailed tumor

characterization to identify features, structures, and biomar-

kers that targeted therapies can act upon. The relevance of

precision medicine has grown over the past 20 years, par-

ticularly in breast cancer, with notable impact from new

antibody-drug conjugates targeting the HER2 protein.3–5

Diagnosis depends on HER2 staining scores in tumor

samples, ranging from 0 to 1+, 2+ (requiring further ISH

analysis), or 3+ . This scoring initially led to two patient

categories: HER2-negative (score 0, 1+, or 2+with ISH

negative) and HER2-positive (score 2+with ISH positive

or 3+), granting access to trastuzumab (HER2-targeted

monoclonal antibody) treatment.6 Recently, new antibody-

drug conjugates like trastuzumab deruxtecan have shown

benefits for a new intermediate category of breast cancer

patients, termed HER2-Low (score 1+ or 2+with ISH

negative).7,8 These advances highlight the crucial role of

pathologists, who must assess and adapt to evolving

HER2 testing nomenclature.

Anatomic and molecular pathology labs use specialized

techniques to process tissue and liquid biopsy samples, reveal-

ing morphology, genetic mutations, and protein expression.

The diagnostic data reported by pathologists is essential in pre-

cision medicine and is typically recorded in the narrative

format of a pathology report. For both prospective patient mon-

itoring and retrospective research, including real-world data

and quality monitoring, there is growing interest in extracting

and structuring information from these reports.9,10 This

demand has spurred research aimed at creating digital factories

to centralize diagnostic data, yet a gap remains in making this

data accessible and actionable.

A major challenge is the lack of standardized, structured

reporting in pathology labs, where report formats and

content can vary widely, often including free text (Figure 1).

Reports may be fully structured, semi-structured, or highly

unstructured, with inconsistencies across labs, pathologists,

and timeframes. To address this, initiatives like the

International Collaboration on Cancer Reporting (ICCR)11

aim to provide a unified approach, and ICCR has recently col-

laborated with SNOMED International12 to standardize ter-

minology and coding.

However, adopting structured synoptic reporting has

been challenging, as new guidelines are continually

released, and the diversity of cases makes it difficult for

pathologists to abandon free text.13 Free text also allows

flexibility for describing rare conditions, which could be

lost with rigid structuring. As a complementary approach,

some initiatives14 and registries focus on post-structuring

data from narrative reports. However, manual data extrac-

tion remains common, requiring extensive time and intro-

ducing potential for human error. Semi-automated tools

exist15–18 but generally lack the scalability to adapt to the

variety of unstructured data in pathology reports, typically

focusing on a single biomarker.

Recent advances in natural language processing (NLP),

particularly deep learning and transformer models, have sig-

nificantly improved information extraction from unstructured

clinical data.19 This study used a rule-based approach. It was

chosen for interpretability and precision in handling heteroge-

neous datasets. Rule-based methods are proven effective for

specific healthcare tasks, as seen in applications for extracting

structured data from pathology and radiology reports.20

To address this infrastructure gap, Connect by Circular-Lab

developed C-LAB®, an artificial intelligence (AI) platform that

automates and centralizes pathology testing data. C-LAB® sup-

ports digitalization of any diagnostic data—structured or

unstructured, from any indication—and provides labs with

rapid, precise access to actionable digital data.

This study evaluated C-LAB®
’s performance in extract-

ing, structuring, and centralizing biomarker data from

breast cancer pathology reports. C-LAB® was deployed at

the Institut de Cancérologie de l’Ouest (ICO) and compared

with the ESME database, a structured national database for

cancer patient data from the Unicancer network in France,

which served as the gold standard for this analysis. The

study focused on biomarkers HER2 and hormonal receptors

from 2323 anatomic pathology reports, corresponding to

487 breast cancer patients.

Materials and methods

This study was carried out at the ICO, a not-for-profit

Comprehensive Cancer Center. ICO is located in the west

of France (Pays de la Loire) and is part of the

UNICANCER network of 18 French non-for-profit

Comprehensive Cancer Centers. The study was conducted
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in 2022 based on retrospective reports of patients followed

at ICO between January 2014 and December 2021.

ICO dataset

The ICO repository includes nearly 10 million clinical texts

in French, with approximately 650,000 new reports each

year, 5% of which are pathology reports. For this study,

C-LAB® analyzed 2323 anatomic pathology reports from

ICO’s digital archive corresponding to 487 patients ran-

domly selected from all breast cancer patients followed at

ICO between January 2014 and December 2021. These

reports span both ICO’s internal records and cases centra-

lized from numerous labs across western France, adding

substantial variability in reporting styles and formats,

which increases data extraction complexity. Figure 1

Figure 1. Narrative content and OCR errors in reports. This figure showcases examples of report formats and wording variations in breast
biomarker results sourced from various laboratories, anonymized as Labs A, B, C, and D. These examples highlight the substantial diversity

in structure and terminology used in pathology reports, particularly in biomarker data presentation, which poses significant challenges for
standardized data description and analysis. The narrative data ICO accessed was processed through OCR technology, a tool designed to
extract text based on character shape recognition. While OCR is effective for basic text extraction, it has inherent limitations in accurately
distinguishing visually similar characters. For instance, the OCR software struggled to differentiate between “o” and “0,” or “2” and “Z,”
resulting in transcription errors such as “HER2” being misinterpreted as “HERZ.” Similarly, nuanced distinctions between accented

characters, such as “à” and “a,” were occasionally missed, leading to inaccuracies. Another frequent error involved symbols, where OCR
occasionally rendered “%” as “#.” The English translation is provided to improve clarity.

Le Borgne et al. 3



provides anonymized samples illustrating the narrative

nature of the reports and optical character recognition

(OCR) errors observed that made the reports even more

complex. Figure 2 provides a Venn diagram of the data

selection process. Among the 2323 anatomic pathology

reports, 292 reports were used during the development

phase to design and refine the rule-based extraction algo-

rithm. Once finalized, the algorithm was applied to the

entire set of 2323 reports. A subset of 666 reports belonged

to 97 patients also included in the national ESME database;

these served as our “gold standard” for comparative per-

formance analysis.

ESME database

The ESME cohort, initiated in 2014 by Unicancer, aims to

centralize real-world data on metastatic breast cancer

through a comprehensive dataset collected across 18

French Comprehensive Cancer Centers. This academic ini-

tiative aggregates data from patient records, including

demographics and treatment details, from electronic

medical records. More detailed information on the ESME

cohort is available in prior publications.21,22 Among the

ICO reports processed by C-LAB®, 666 correspond to

cases also present in the ESME database, which is used

as the gold standard for comparison in this study.

However, as ESME relies on single manual data entry,

there may be potential inaccuracies, suggesting that

C-LAB®
’s actual performance could be even higher than

indicated by this benchmark. The ESME database repre-

sents a benchmark for evaluation, but it is not without

potential errors due to its reliance on manual data entry

without secondary review. Therefore, the comparison

between C-LAB® and ESME reflects how closely the

model aligns with human interpretations, not an absolute

measure of correctness.

C-LAB® platform and data processing

C-LAB® is an AI-driven platform developed by Connect by

Circular-Lab to digitize, extract, centralize, and structure

diagnostic and biomarker data from structured and unstruc-

tured pathology reports in real time. This automation

enables prospective and retrospective data monitoring, sup-

ports real-world evidence generation, and facilitates drug

efficacy assessments and post-market surveillance.

The platform uses NLP techniques, specifically rule-

based algorithms, to anonymize, extract, and structure rele-

vant data from pathology reports. C-LAB® accepts various

file formats, including PDFs with text, Word, and Excel

files, enabling flexibility across reporting styles.

Central to C-LAB®
’s data extraction is a predefined ontol-

ogy—a structured set of specific entities, or tags, tailored to

each medical indication. In this study, C-LAB® extracted

and normalized under specific tags multiple variables,

further compared with the ESME database, as shown in

Table 1. C-LAB® has not inferred or interpreted any data

beyond what is explicitly stated in the pathologist’s

report. For instance, the Estrogen and Progesterone

Immunohistochemistry (IHC) results are determined solely

by the presence of the words “negative” or “positive” and

do not consider staining percentage thresholds. For informa-

tion, pathologists in France use the 10% staining threshold to

conclude on positivity of estrogen receptors (ERs) or proges-

terone receptors (PRs), as opposed to the US practice where

the 1% threshold is used.23,24

Connect by Circular-Lab has developed an annotation

tool to streamline the training process, allowing a training

set of reports to be annotated, which provides the basis

for C-LAB®
’s rule-based NLP system. The extraction algo-

rithm is built on regex and token-based pattern matching

using SpaCy’s, an open-source Python library, Matcher

module, which supports flexible recognition of clinical nar-

rative variations. SpaCy’s robust NLP capabilities, includ-

ing tokenization and customizable entity recognition,

allow C-LAB® to scale across different medical report

formats with accuracy. SpaCy divides text into “tokens,”

which are individual units such as words, punctuation

marks, or numbers, enabling a fine-grained analysis of the

language structure. By creating rules with ordered

sequences of tokens, the system can accurately capture

entities across various text formats and clinical language

variations. Token-based patterns allow flexible matching

across phrasing variations, which is particularly useful in

clinical narratives. Once the ontology is established,

C-LAB® enables the creation of inter-tag relationshipsFigure 2. Venn diagram of study cohort and report selection.
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that capture clinical dependencies between tags, enhancing

data standardization and minimizing interpretation bias.

Although these relationships were not applied in this

study, which focused solely on raw data extraction, they

represent an important feature for enriching data connec-

tions in clinical practice.

We followed a sequential process to develop the rule-

based algorithm, utilizing 292 reports to design and

refine the extraction rules. This iterative approach

involved careful monitoring and adjustments to ensure

the model’s robustness. The finalized model was then

used in inference to extract data from the rest of the

reports. To calculate the performance metrics we relied

on an existing gold standard, the ESME database, which,

despite its limitations, provided a sufficient benchmark

to verify the model’s performance.

Comparative analysis

In order to assess the quality of the data produced by the

C-LAB® algorithm, we compared the predictions from

the C-LAB® algorithm with the manually collected data

present in the ESME database. The comparison focuses

on four biomarkers: HER2, ISH, Estrogen, and

Progesterone. For each biomarker, final results and stain-

ing percentage, when available, were evaluated independ-

ently. Note that only mention of tags combined with

results were considered (i.e. tags without associated

results are deleted). For each biomarker independently,

the results found by the algorithm and those present in

ESME were matched by date. As biomarker measure-

ments are longitudinal data, to be able to compare the

results between two databases it is necessary to first rec-

oncile the measurements by patient and by date of meas-

urement. Although the same reports used for manual

entry were provided to the C-LAB® algorithm, the

dates do not correspond exactly (entry error, taking

into account the date of sampling or the date of result

or the date of the report, etc.). Matching was done so

that the results that can be matched with an exact date

were matched, then among the remaining unmatched

results those that can be matched with a difference of

1 day were matched, and so on up to a maximum

accepted difference of 15 days. Each result present in

ESME or found by the C-LAB® algorithm can only be

matched once.

Matched biomarker results were considered true posi-

tives (TP) if the result found by C-LAB® was equal to the

one present in ESME. If the result found by C-LAB® was

different from the one present in ESME, C-LAB® result

was counted as false positive (FP) and false negative

(FN) as it needs to be counted as an error in both

Precision and Recall. Unmatched C-LAB® results were

considered FP and unmatched ESME results were consid-

ered FN. Since true negatives (TN) represent cases where

the algorithm correctly did not tag something as an entity,

these cases usually do not contribute directly to evaluating

the algorithm’s performance in detecting entities.

Table 1. List of tags (ontology) extracted by C-LAB® on ICO anatomic pathology reports and compared with the ESME database.

Tag Definition Normalization

% Estrogen IHC The percentage of cells in breast tissue sample that show positive staining for estrogen

receptors using Immunohistochemistry (IHC).

#%

% Progesterone

IHC

The percentage of cells in breast tissue sample that show positive staining for

progesterone receptors using IHC.

#%

Estrogen IHC result The overall result indicating whether estrogen receptors are present in the breast tissue

sample based on IHC analysis.

Positive/negative

Her2 IHC result The score indicating the level of HER2 protein expression in breast tissue sample using

Immunohistochemistry (IHC).

0 / 1+ / 2+ / 3+

Patient number A unique identifier assigned to a patient for tracking and record-keeping purposes. #

Progesterone IHC

result

The overall result indicating whether progesterone receptors are present in the breast

tissue sample based on IHC analysis.

Positive/negative

Result ISH Her2 The result of the In Situ Hybridization (ISH) test for HER2 gene amplification in the breast

tissue sample.

Amplified/non

amplified

Sample date Date of retrieval of sample material (when the sample is received in the lab) Day/month/year

Le Borgne et al. 5



The performance of the C-LAB® algorithmwas estimated

in terms of Precision (or positive predictive value), Recall (or

sensitivity) and F1 score for each biomarker as follows:

Precision =
TP

TP+ FP

Recall =
TP

TP+ FN

F1 Score = 2 ×
Precision × Recall

Precision+ Recall

The 95% confidence intervals (95% CI) were obtained by

nonparametric bootstrap (1000 iterations).

Results

The results aggregated for all patients are presented in

Table 2.

Among the 666 reports used as gold standard, associated

with 98 metastatic breast cancer patients there are between

220 and 317 results per biomarker except for ISH where

there are only 43 results. For example, for the HER2 bio-

marker there are between 0 and 7 results by patient with a

median equal to three measures by patient. The results

show a percentage of recall varying from 70% to 82% for

all biomarkers tags analyzed, from 73% to 82% for precision

and from 71% to 81% for F1 Score, revealing a significantly

higher amount of true positive extractions than FP and FN

ones. The results are close in terms of recall and precision

for both ER and PR biomarkers whether in staining percent-

age or binary final results (positive, negative) with results

close to 80% except for the PR biomarker in staining percent-

age with a precision equal to 73.3% (95% CI from 67.8% to

78.8%). The results for the HER2 biomarker (desired result in

the form 0, 1+, 2+, 3+) were slightly lower with a recall of

74.6% (95% CI from 69.7% to 79.4%), a precision

of 77.8% (95% CI from 72.9% to 82.9%) and an F1 score

of 76.1% (95%CI from 72.1% to 79.9%). The ISH biomarker,

which is only searched for patients with HER2 status equal to

2+, was associated with the lowest results (i.e. F1 score was

equal to 71.4% (95% CI from 60.9% to 81.3%)). The match-

ing temporal distances are presented in Figure 3.

Discussion

In precision medicine, especially in breast cancer, anatomic

pathology testing has a central role to support the access of

patients to the right treatment. Furthermore, the increasing

development of antibody-drug conjugates which are often

associated with a specific biomarker IHC test, reinforces

even more the importance of pathology labs. Breast

cancer illustrates this evolution well, with the arrival of

the HER2-Low concept associated with the prescription

Table 2. Aggregated results from C-LAB®–ESME comparison for the biomarker of interest.

Biomarker TP FP (unmatched) FN (unmatched) Precision Recall F1 score

HER2 (0, 1+, 2+, 3+) 217 62 (53) 74 (65) 77.8 [72.9–82.9] 74.6 [69.7–79.4] 76.1 [72.1–79.9]

ISH (amplified, not amplified) 30 11 (11) 13 (13) 73.2 [60.6–86.1] 69.8 [56–84.1] 71.4 [60.9–81.3]

ER (positive, negative) 250 55 (50) 67 (62) 82.0 [77.9–85.9] 78.9 [73.7–83.9] 80.4 [76.6–84.2]

ER (number in %) 214 56 (37) 46 dfd(47) 79.3 [74.6–83.5] 82.3 [77.4–86.7] 80.8 [77.1–84.0]

PR (positive, negative) 249 59 (53) 58 (52) 80.8 [76.8–84.9] 81.1 [76.5–85.3] 81.0 [77.8–83.8]

PR (number in %) 181 66 (58) 39 (31) 73.3 [67.8–78.8] 82.3 [77.4–87.1] 77.5 [73.5–81.5]

For each biomarker (HER2 score, ISH result, ER and PR final results, and ER and PR staining percentage), true positive (TP), false positive (FP), and false

negative (FN) have been calculated together with recall, precision and F1 score including 95% confidence intervals. In the FP and FN columns are indicated in

parentheses the number of FP and FN due to unmatched C-LAB® results and unmatched ESME results, respectively. The other FP and FN are matched entities

but with a different biomarker result.

Classification Definition

True Positives

(TP)

C-LAB®’s result matches the result in ESME.

False Positives

(FP)

C-LAB® identifies a result not in ESME.

C-LAB®’s result differs from ESME (affecting

Precision).

False Negatives

(FN)

Result is in ESME but not identified by

C-LAB®.

C-LAB®’s result differs from ESME (affecting

Recall).

True Negatives

(TN)

Neither C-LAB® nor ESME identify a result

(excluded from performance evaluation).
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of trastuzumab-deruxtecan, drawing new attention on

the HER2 biomarker IHC test among the pathology

community.25

In spite of the increasing digitalization of the pathology

labs all over the world,26,27 the last step of the testing work-

flow, corresponding to the reporting of the diagnostic

method and results by the pathologist to the clinician, is

associated with gaps in terms of digitalization, structuring,

centralization, monitoring, actionability and archiving of

reports data, as shown in Figure 4.

This gap in the workflow represents a challenge to

access easily and timely both retrospective and prospective

testing data which can impact testing quality optimization,

patient outcome, and monitoring. Also, it potentially leads

to delayed and/or non-appropriate treatment, unequal

access of patients to diagnostics and treatment due to the

lack of reactivity upon testing deviation, higher time and

cost of research and clinical studies. Even in centers

where reports are digitized, it often ends up with large

data factories with several years of retrospective unstruc-

tured data that are barely accessible, often requiring manu-

ally transfer data of interest into excel tables or other

manual and time-consuming solutions also associated

with possible human errors during manual data transfer.

In this context, our comparison study between the

AI-based C-LAB® digital platform and the analogic

ESME database is essential to address the infrastructural

gap in the digitalization, centralization, and structuration

of diagnostic data to make digital factories more accessible

and actionable. The key being here to enable a more auto-

mated and accurate extraction and structuring of pathology

report’s data toward enhanced real-time monitoring.

Our results show that the C-LAB® algorithm achieves

recall (the ability to identify all relevant data) and preci-

sion (the ability to avoid FPs) rates close to 80% for

extracting and structuring most hormonal receptor and

HER2 status data. However, the performance for ISH

was slightly lower, with an F1 score of 71.4% and preci-

sion of 73.2%. This reflects the inherent challenges of

detecting less common data points, especially within

unstructured and OCR-processed reports. The accept-

able level of errors for an AI-based algorithm depends

on its intended use. For tasks like improving the effi-

ciency of manual data entry, high recall is crucial to

ensure that as much relevant data as possible is captured,

even if it means reviewing additional results due to lower

precision. In contrast, for applications such as real-world

evidence studies, where data must be highly accurate,

the tolerance for errors is much lower. Balancing recall

and precision during algorithm development is essential,

as it affects both the completeness and the accuracy of

the extracted data, and this tradeoff must align with the

specific goals of the application. Note that, C-LAB®

includes internal alerts to flag potential extraction

errors, reinforcing quality control. These alerts ensure

timely identification and correction of extraction

errors, further enhancing the platform’s reliability and

accuracy.

However, this work has several limitations which should

be noted. Firstly, we did not separate the data into training

and validation sets, so we could not exclude overoptimistic

results due to overfitting. At the time of C-LAB®
’s applica-

tion to ICO reports, Circular-Lab was not aware of the

patients included in ESME, excluding an over selection of

reports of patients included in ESME in the training set.

Secondly, we used the ESME database as a reference (i.e.

gold standard), although this is a cohort for which data

have been entered manually by a single person without

second person review. Some discrepancies may therefore

be due to an error in the ESME database and not to the

C-LAB® platform, particularly for FP results. An improve-

ment to this work would be to have a gold standard inde-

pendent of the learning set and with double entry and

reviewing of inconsistencies in order to ensure that the dif-

ferences could be attributed to AI errors. However, our

current gold standard with its errors is to the disadvantage

of our algorithm because it may underestimate the perform-

ance of C-LAB® platform. Thirdly, it is also important to

mention that in this study we matched the measurements

with a maximum deviation of 15 days, an arbitrary thresh-

old which we consider acceptable. Note that, most of the

matched measurements are matched on exact dates or

with a difference of 1 day (Figure 3).

Our findings are consistent with those reported by

Santos et al.,19 which also highlighted the challenges of

extracting information from unstructured pathology

reports. In our experiment, F1 scores for entity extraction

ranged from 71.4% to 81.0%, closely aligning with

results from other studies in the field. For example,

Mendoza-Urbano et al.,28 which focused on oncology

pathology reports, reported F1-scores ranging from

52.9% to 100%. Similarly, Yoon et al.29 examining pre-

anesthesia evaluation summaries, found F1-scores

between 65.4% and 77.2%, while Wieneke et al.17

achieved F1-scores of 80.0%, 92.0%, and 50.0% for

extracting procedure, laterality, and result entities from

pathology reports, respectively. These comparisons dem-

onstrate that our rule-based algorithm performs compar-

ably to other NLP approaches, including machine

learning methods, despite the added complexities of

unstructured data and OCR-related errors.

The reports’ samples as shown in Figure 1 show how

unstructured some reports can be, which reinforce the

need for AI and demonstrate the power of C-LAB® to

reach good extraction accuracy even with such unstructured

reports. On top of it, odd characters such as omega or spaces

into words or mis-wordings can arise in some reports due to

OCRization processes.

While rule-based approaches offer extensive customiza-

tion and handling of OCR-related issues but can be

Le Borgne et al. 7



associated with manual efforts and be vulnerable to minor

shifts in language,19 deep learning methods, which can

model intricate relationships between words and labels,19

represent an interesting area of research for future

development.

In the end, this study shows the promising capacity of

NLP AI technologies such as rule-based systems in extract-

ing and structuring complex testing data to create digital

factories that are accessible and actionable and better con-

nected to healthcare stakeholders. As a next step, it would

be good to aggregate the results of the three biomarkers

(ER, PR, HER2) as they are all three required to make thera-

peutic decisions.

In line with this, such a platform can be highly benefi-

cial to retrieve easily and quickly reported information

when a change occurs in the testing nomenclature. For

example, in the context of breast cancer and the arising

new HER2-Low tumor entity, having a tool that can

track diagnostic scores precisely and in real time will be

key to optimize controlled implementation of new

testing recommendations and patient access to new ther-

apies. C-LAB® can facilitate the management of retro-

spective and prospective studies by monitoring

HER2-Low prevalence and even extrapolating potential

HER2-Low patients from the reported staining and

scoring data.

Conclusion

This study demonstrates the significant potential of the

C-LAB® AI platform in automating the extraction, structur-

ing, and centralization of complex biomarker data from

Figure 3. Distribution of matching temporal distances between C-LAB® results and ESME results. Positive distances mean that the date of

the result found by C-LAB® is earlier than the date of the result present in ESME. A: HER2; B: ISH; C: ER (Positive, Negative), D: ER
(percentage); E: PR (Positive, Negative), F: PR (percentage).
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Figure 4. Conventional versus digital pathology workflow and C-LAB® positioning. The current digitalization of the pathology workflow
shows a gap in addressing the reporting and monitoring of testing data.
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unstructured pathology reports in breast cancer patients. By

achieving precision and recall rates close to 80% for key

biomarkers such as hormonal receptors and HER2 status,

C-LAB® proves to be a valuable tool in bridging the infra-

structural gap in the digitalization of pathology data. The

platform’s ability to handle heterogeneous and unstructured

reports, including those with OCR-induced errors, under-

scores its robustness and adaptability, particularly in the

context of precision medicine.

By transforming narrative reports into a centralized

digital format, this study demonstrates the platform’s cap-

ability to support data accessibility and provide a founda-

tion for harmonized reporting. It also demonstrates the

ability to adapt efficiently to changes in testing nomencla-

ture and guidelines, making it a promising tool in the evolv-

ing field of cancer diagnostics and treatment. For instance,

in the context of the emerging HER2-Low classification in

breast cancer, the platform could aid in identifying and

monitoring patient populations that may benefit from new

therapeutic options. While these findings illustrate the

promise of this technology in facilitating more efficient

data handling, further validation and analysis are necessary

to accurately assess its performance and to fully assess its

impact on patient outcomes and research initiatives.

In conclusion, AI-driven solutions like C-LAB® hold

significant promise in enhancing the precision and effi-

ciency of pathology data management. By overcoming

the challenges associated with unstructured reporting and

OCR limitations, such platforms could play a pivotal role

in advancing personalized medicine and improving

patient care outcomes in oncology.
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